
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

CylinderTag: An Accurate and Flexible Marker
for Cylinder-Shape Objects Pose Estimation

Based on Projective Invariants
Shaoan Wang, Mingzhu Zhu, Yaoqing Hu, Dongyue Li, Fusong Yuan, and Junzhi Yu, Fellow, IEEE

Abstract—High-precision pose estimation based on visual markers has been a thriving research topic in the field of computer vision.
However, the suitability of traditional flat markers on curved objects is limited due to the diverse shapes of curved surfaces, which
hinders the development of high-precision pose estimation for curved objects. Therefore, this paper proposes a novel visual marker
called CylinderTag, which is designed for developable curved surfaces such as cylindrical surfaces. CylinderTag is a cyclic marker that
can be firmly attached to objects with a cylindrical shape. Leveraging the manifold assumption, the cross-ratio in projective invariance
is utilized for encoding in the direction of zero curvature on the surface. Additionally, to facilitate the usage of CylinderTag, we propose
a heuristic search-based marker generator and a high-performance recognizer as well. Moreover, an all-encompassing evaluation of
CylinderTag properties is conducted by means of extensive experimentation, covering detection rate, detection speed, dictionary size,
localization jitter, and pose estimation accuracy. CylinderTag showcases superior detection performance from varying view angles in
comparison to traditional visual markers, accompanied by higher localization accuracy. Furthermore, CylinderTag boasts real-time
detection capability and an extensive marker dictionary, offering enhanced versatility and practicality in a wide range of applications.
Experimental results demonstrate that the CylinderTag is a highly promising visual marker for use on cylindrical-like surfaces, thus
offering important guidance for future research on high-precision visual localization of cylinder-shaped objects. The code is available
at: https://github.com/wsakobe/CylinderTag.

Index Terms—CylinderTag, cylindrical object, fiducial marker, projective invariants, pose estimation.
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1 INTRODUCTION

POSE estimation plays a crucial role in the vision-driven
interacting tasks ranging from VR/AR [1], human-robot

interaction (HRI) [2], to motion capture (MoCap) [3]. As
more advanced applications emerge, there is a growing
demand for more accurate, convenient, and environment-
adaptive 6-DoF object pose estimators. Traditional methods
focus on designing fiducial markers with encoded code
within the pattern on the marker, enabling the recognition
algorithm to detect the pattern and decode the unique
information stored in different markers. These markers are
rigidly mounted to objects whose poses are to be estimated
and are used to provide high-precision features (e.g., cor-
ners, lines, and circles) to estimate the relative 6-DoF poses
between the objects frame and the camera frame.

With the continuous development of advanced tech-
nology, the demand for high-precision pose estimation is
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increasing in complex scenarios, particularly those involv-
ing curved objects. Square markers are the most widely
used type of visual marker, but their recognition algorithm
depends on the structural properties of the square, which
can result in recognition failure due to surface deformation.
As a result, these markers can only be mounted with low
adhesion on curved objects, making them difficult to decode
from most viewing angles. Circular markers can usually
withstand a certain degree of deformation, which means
they can be used on surfaces with some curvature, however,
their localization relies on the fitting of circular features,
and surface deformation can lead to the deformation of
circular features, which can make localization inaccurate.
Topological markers, which do not require canonical model-
ing, can mitigate the effect of surface deformation. However,
they are not cyclic and require a limited viewpoint for full
recognition.

Several recently developed marker systems have recog-
nized the effects of deformation and are utilizing emerging
technologies, such as deep learning, to address this issue.
Through end-to-end training, a large number of images
simulating marker deformation can be generated, which en-
hances the detection performance in the presence of defor-
mation. Despite the significant improvement in recognition
performance for deformation, existing deep learning-based
marker systems are still limited to square shapes and do not
account for the nature of the deformed surface, resulting in
low localization accuracy.

In this work, a fiducial marker system towards the
cylindrical-like surfaces called CylinderTag is proposed.

https://github.com/wsakobe/CylinderTag
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Fig. 1. Various types of visual markers, classified into square, circular, dot, topological, and deep learning patterns.

CylinderTag incorporates a long strip feature, which is
based on the manifold assumption of cylindrical-like sur-
faces, and employs the cross-ratio as the encoding method.
We propose both the marker generator and recognizer, and
conduct experiments to verify the advantages of this marker
in recognition and localization compared to traditional
markers. The main contributions of this work are elaborated
as follows:
1) A novel visual marker system called CylinderTag is

proposed for cylindrical-like surface design, with an
encoding principle based on projective invariants.

2) A CylinderTag marker generator based on heuristic
search is proposed to efficiently generate a sufficient
number of markers.

3) A real-time CylinderTag marker recognizer is proposed.
Extensive experiments are conducted to verify its advan-
tages in detection and localization accuracy.
The remainder of this paper is organized as follows.

Section 2 describes the literature survey on existing marker
systems. Section 3 provides a detailed explanation of the
CylinderTag system, which comprises the marker generator
and recognizer. Several experiments were conducted in Sec-
tion 4 to evaluate the design, detection, localization jitter,
and pose estimation performance of CylinderTag compared
to traditional markers, as well as to showcase its versatility
in various application scenarios. Section 5 provides the
conclusions and future work of this paper.

2 RELATED WORKS

Since the invention and widespread use of 2D barcodes such
as Data Matrix, Maxi code, and QR code in the late 1980s,
more research has focused on developing more generalized,
robust, and stable fiducial markers. Nowadays, various
fiducial markers with different applications or advantages
have been developed, as shown in Fig. 1. These markers can
be categorized as follows:

Square pattern The square pattern usually comprises a
high-contrast black square border and an internal coded
pattern. AprilTag [4], [5], ArUco [6], and ARTag [7], [8]
are the most commonly used marker systems in robot
navigation and AR/VR today. Their internal patterns are
similar by creating tight black/white regions to encode
binary codes. In addition, for system robustness, the Cyclic
Redundancy Check (CRC) or Reed-Solomon codes which
are commonly used in the communication field are intro-
duced to improve the capability of the error correlation
mechanism. ChromaTag [9] introduces LAB colorspace that
replaces black/white region into different colors over April-
Tag to improve marker detection speed. ARToolKit [10]
uses image cross-correlation to obtain marker information,
which means the internal pattern can be arbitrary except for
symmetric ones. Tanaka et al. designed LentiMark [11] and
its improved version [12] based on VMP and FDP in order
to solve the problem of pose ambiguity of planar markers.
Tateno et al. designed Nested Marker [13] by introducing a
recursive layered structure and thus realizing robust marker
recognition at different scales. Schweiger et al. [14] proposed
markers that are specifically designed for scale-invariant
feature detectors SIFT and SURF. These two detectors can
obtain the highest response scores, resulting in very high
detection rates at different scales. Herout et al. [15] used
De Bruijn tori for information encoding, which means that
only a subregion on the marker needs to be observed to
decode the corresponding information. Garrido-Jurado et al.
[16] also focused on marker generation tasks, using mixed
integer programming to accelerate the generation of ArUco.
Zhu et al. [17], [18] proposed the binary wave function
collapse (bWFC) algorithm that can arbitrarily set the shape
of the pattern and the subregion with a fast-generating
speed.

Circular pattern The circular pattern has also received
significant attention due to the property that the quadratic
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form remains invariant under projection transformation,
which means that the circle can remain quadratic in most
views. This property helps the detector to easily segment out
the marked area. In the earliest work, Concentric Contrast
Circles (CCC) [19] was first introduced in target design with
a circular pattern. Subsequent work was based on this by
using multiple rings of different colors. In addition, Fouri-
erTag [20] utilizes frequency images as features for adequate
identification. RUNETag [21] arranges the points uniformly
into concentric circles and introduces a generalized BCH
code for the strongest error correction and anti-obscuration
capability. CCTag [22], [23] is an improvement of CCC. Its
main contribution is the robustness of motion blur.

Dot pattern Because of the excellent noise resistance of the
dot feature, patterns with dots also raise some attention. Pi-
Tag [24] is composed of equal-sized dots distributed around
the edges of the square. It adopted cross-ratio, which is one
of the projective invariants, as the encoder. Consisting of
multiple dots randomly distributed in the middle of two
concentric circles, X-Tag [25] similarly utilized cross-ratios
and intersection preservation constraints as a reference for
decoding. In addition, Watanabe et al. [26] proposed Ex-
tended Dot Cluster Marker (EDCM), which is an improved
version of Deformable Dot Cluster Marker (DDCM) [27].
These two markers are encoded by using the number of
dots in small areas as features to obtain a strong resistance
to occlusion.

Topological pattern Another widely developed category of
the marker is encoded based on the topological informa-
tion, which demonstrates the ability to improve robustness
against noise and brightness. ReacTIVision [29] provided
unique identities purely with the topological structure by
building a left heavy depth sequence of the region adja-
cency graph. BullsEye [30] consists of a central white dot
surrounded by a solid black ring and one or more data rings
again surrounded by a solid white ring inside a black ring
with three white studs. Although this type of marker can
be decoded without the limitation of shape, its localization
performance is also affected by the lack of sufficient features.
TopoTag [31] utilized the structure of the square pattern
and only used the topological pattern as the encoder, which
offered enough corner features to locate.

Deep learning pattern With the rapid development of
deep learning, many scholars have pondered whether deep
neural networks can be used instead of humans to design
more robust and stable markers. A feasible solution was first
proposed by Grinchuk et al. [32], which used a synthesizer
network to generate patterns that are difficult for humans
to understand. E2ETag [33] is an attempt to build the
first end-to-end trainable fiducial marker generator, while
the very small size of the code dictionary and the slow
detecting speed both limit its wide application. Recently,
DeepFormableTag [34] brought sufficient attention to this
field. By proposing a differentiable image simulator that can
render images including close-to-realistic reflection, color
alteration, imaging noise, and shape deformation of mark-
ers, a large image dataset containing the majority of real-
world situations is generated, resulting in the most robust
detector to date. Currently, using deep learning to generate
new types of markers is still in the preliminary stage, and
although it has advantages that are difficult to compare with

Zero curvature

direction

Developable surface

(Manifold      )

Tangent space

Flat area

Fig. 2. Schematic diagram of the manifold assumption. The neigh-
borhood of a point on the manifold can be approximated by its tangent
space.

artificial markers, it is still limited to the traditional square
marker shape.

3 CYLINDERTAG SYSTEM

CylinderTag is dedicated to designing a marker system with
no additional accessories (like the infrared sphere-based
optical MoCap system [35]) and uniformity in any viewing
angle for high-precision pose estimation applications of
cylindrical objects. For markers that are tightly attached to
cylindrical objects, a problem that needs to be overcome is
the deformation of the surface perpendicular to the cylindri-
cal axis. However, the planes passing through the cylindri-
cal axis intersect the cylindrical surface as lines, revealing
that the cross-ratio in these lines satisfies the perspective
invariants. Furthermore, under the manifold assumption,
any narrow enough strip of surface in a cylinder parallel
to the direction of the cylindrical axis can be regarded as
a plane, providing ideas for the design of the features in
CylinderTag.

3.1 Marker Design & Generator
In this subsection, the design principle and basic structure
of CylinderTag are introduced in detail. Based on simulation
experiments, the nature of the cross-ratio as a projection
invariant is analyzed, and the design of CylinderTag is
guided by the analysis results. In addition, a CylinderTag
generator based on heuristic search is proposed, which can
heuristically select the optimal solution according to the
potential probabilities of different solutions in the current
solution space, thus significantly improving the speed and
efficiency of marker generation.

3.1.1 Manifold Assumption
For developable surfaces, such as cylindrical and conical
surfaces, the property of zero curvature in a given direc-
tion is satisfied. That is, a straight line in the direction
of zero curvature can be kept straight. Therefore, some
projective invariants associated with lines can be considered
to participate in the design of the marker. Cross-ratio (cr) is
one of the most common projective invariants in projective
geometry and is also widely used for feature encoding of
visual markers [36], [37], [38]. It describes the proportional
invariance of four points that are invariant in a line under a
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A B C D

A’ B’ C’ D’

Fig. 3. Schematic diagram of the cross-ratio. Under the projective
transformation, the cross-ratios corresponding to the four points on the
same line remain unchanged.

0.3 0.4 0.5 0.6 0.7

Location of BC on the line

1.5

1.6

1.7

1.8

C
ro

ss
-r

a
ti

o
 

0.3 0.4 0.5 0.6 0.7

Location of BC on the line

7

7.5

8

8.5

9

S
ta

n
d

a
rd

 d
e
v

ia
ti

o
n

 
 o

f 
c
ro

ss
-r

a
ti

o

10
-2 (a)

(b)

Fig. 4. The nature of the cross-ratio. (a) The value of the cross-ratio
with respect to the location of BC. (b) The standard deviation of the
cross-ratio with respect to the location of BC.

projective transformation. This property can be well applied
to the zero curvature direction of the developable surface
described above. For the other non-zero curvature direction,
it can be conceptualized as a manifold M in R3 where the
local neighborhood ofM can be treated as a tangent space
ofM and satisfying the planar property, as shown in Fig. 2.

3.1.2 The Nature of Cross-ratio
For four fixed points A,B,C,D located on a straight line
and four points A′, B′, C ′, D′ under projective transforma-
tion, as shown in Fig. 3, the cross-ratio is formulated as:

(A,B;C,D) = (A′, B′;C ′, D′) =
AC

CB
/
AD

DB
(1)

In order to make better use of the cross-ratio, the prop-
erties it holds deserve to be studied and analyzed. The
nonlinear nature of the cross-ratios is often discussed [39],
and as Fig. 4a shows, the cross-ratios change more slowly
near the midpoint. Next, if the cross-ratio is used as the
encoding principle for CylinderTag, it is also necessary to
analyze the error of the cross-ratio in different cases. Here,
we perform simulation experiments for the general case.
For four points A,B,C,D on a two-dimensional straight
line of fixed length, we fix the positions of points A and
D and fix the distance BC . An i.i.d. 2D Gaussian noise
is applied to the positions of these points to simulate the
corner localization errors. Calculate the standard deviation
σ of the cross-ratio calculation when the midpoint of BC
is located at different positions on the line. As illustrated

Feature subregion Feature field

cr 00~11(BIN)

= (b << 2) | cr

=

cr1
cr2

A1 B1 C1 D1

A2 B2 C2 D2

(a)

d1

d2

d3

d4

(b)

Fig. 5. The structure of CylinderTag. (a) Schematic diagram of the
pattern and encoding principle of CylinderTag (12c2f). (b) Schematic
diagram of the method to distinguish the symmetry of the cross-ratio.

in Fig. 4b, the standard deviation of the cross-ratio under
Gaussian noise exhibits a trend that bears resemblance to
that of the cross-ratio itself. Notably, the standard deviation
is significantly higher near the midpoint compared to the
ends. This indicates that under the same noise level, the
standard deviation of the cross-ratio near the midpoint
is larger, while the derivative of the cross-ratio near the
midpoint is smaller, which together lead to a lower decoding
success rate in this region. Hence, the regions closer to the
ends are chosen as the encoding regions, and the regions
near the midpoints are ignored, thus guaranteeing the de-
coding performance.

3.1.3 The Structure of CylinderTag
CylinderTag is composed of several “feature subregions”.
Each “feature subregion” consists of two co-elongated
quads with equal lengths of short edges. Fig. 5a illustrates
the structure of CylinderTag (12c2f), where “12c” means the
number of the columns (feature subregions) and “2f” means
the length of the feature field. For each “feature subregion”,
we assume that the direction of the long edges aligns with
the direction of zero curvature on the surface. Intuitively, in
this case, the four corners corresponding to the long edges
remain co-linear in different poses, and their corresponding
cross-ratio should also remain constant. We categorize the
cross-ratio as the ID of each “feature subregion”, which can
be known by detecting the corner positions on each long
side and computing their corresponding cross-ratio. The
cross-ratio of a “feature subregion” is thus determined by
the lengths of the long sides of the two quadrangles only.
In order to minimize the calculation error of the cross-ratio
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due to undesirable marker pasting and to ensure a high
decoding success rate, a large number of simulation and
physical experiments are carried out to obtain the best cross-
ratio categorization. As a result, the cross-ratio of the long
side of CylinderTag is divided into four categories: 1.47,
1.54, 1.61, and 1.68. Users can adjust these values according
to their needs. Unfortunately, the cross-ratio is of the nature
of symmetry, which means that swapping two rectangles
in the feature subregion yields the same result. It is worth
noting that “feature subregions” under the same marker will
always remain in the same direction, so there will only be
two possible encodings of a marker in either direction. The
symmetry of the cross-ratio can be dealt with by encoding
the distribution of short and long edges

δ =

{
0, d2

d3
> d1+d2

d3+d4

1, d2

d3
< d1+d2

d3+d4

(2)

where δ is the indicator of the distribution of short and
long edges and d1 · · · d4 are the distances of feature corners
shown in Fig. 5b. In addition, the cross-ratios of the two
long edges of the feature subregion are independent and
the two cross-ratios participate in the encoding together,
thus increasing the number of codes. The encoding of each
feature subregion is formulated as follows

{cr} → {00, 01, 10, 11}
Cline = (δ << 2) | cr
Cfeature = (Cl

line << 1) | Cr
line

(3)

where Cline is the code of a long edge, each feature subre-
gion corresponds to the two codes Cl

line, Cr
line, and the fea-

ture code Cfeature is obtained according to these two codes.
However, the code count of individual “feature subregions”
makes it difficult to support large-scale scenario applica-
tions. Therefore, similar to the idea of marker fields [15],
[17], CylinderTag introduces “feature fields” that promise
that k consecutive encodings of feature subregions can only
decode a unique marker ID, thus exponentially increasing
the size of the marker dictionary.

CylinderTag offers an additional advantage of providing
a larger number of features for localization as compared to
traditional 4-corner quad markers. As described in [40], the
increased number of features provides a better estimate of
the object pose result for a variety of PnP algorithms.

3.1.4 Generation Algorithm
A “feature field” based marker generator can often be im-
plemented using a search algorithm that takes an arbitrary
feature as a node and iteratively generates a marker by judg-
ing the conflict between the marker and the current feature.
However, traditional brute-force searching suffers from low
efficiency and a tendency to fall into local backtracking for
large coding numbers. We introduce the heuristic idea to
optimize the search process. Specifically, at each step of
updating markers, the number of potential solutions for
each legal feature is counted, i.e., the number of legal update
solutions that exist after selecting the current feature, and
the feature with the highest number of potential solutions
is selected for updating to maximize the feature utilization
and success rate.

Algorithm 1 Heuristic Search Based Marker Generator
Input: Conflict library {C}, marker size n, marker length l,

feature length f
Output: Marker ID dictionary {M}

1: while size({M}) < n do
2: if size(M ′)== l then
3: {M} ←{M}+M ′

4: break
5: else if M ′ == ∅ then
6: code← rand(64f )
7: while code ̸∈ {C} do
8: code← rand(64f )
9: end while

10: M’← Convert code into octal
11: else if size(M ′)< n− 1 then
12: for i ∈ 0, . . . , 64 do
13: if Legal(i) then
14: bi ← judgeConflict(M’, i)
15: end if
16: end for
17: M’← M’ + argmax

k
bk

18: else
19: while Legal(c) and CyclicConflict(M’, c) do
20: c← rand(64)
21: end while
22: M’← M’ + c
23: end if
24: end while

Marker generation is often a time-consuming opera-
tion. Many works have proposed various types of marker
generation algorithms to obtain marker dictionaries in a
fast and robust manner. Although marker generation only
needs to be done offline, requiring less efficient generation
algorithms, slow and inefficient generation algorithms still
affect users. As mentioned in [6], ArUco takes about 8, 20,
and 90 minutes for dictionaries of size 10, 100, and 1000
respectively, while for AprilTag, it can take several days
to generate a 36-bit marker. Our marker generator enables
efficient mass generation of markers thanks to a large pool
of codes and heuristic searching concepts. In our use, it takes
only 20 seconds to generate over 1000 markers.

3.2 Marker Recognizer
Fig. 6 shows the pipeline of the marker recognizer. To reduce
the effects of noise or image blurring, the input grayscale
image is downsampled to a certain scale depending on the
original image size. Test results show that this procedure
gives better recognition performance and a larger speed
benefit compared to the original image.

3.2.1 Adaptive Threshold
For features consisting of high-contrast regions, adaptive
threshold provides good segmentation of feature regions
from the background by changing the input grayscale image
into the binary image. Inspired by AprilTag 2, the input
image is divided into tiles of 5×5 pixels to reduce computa-
tional cost compared with traditional methods. For each tile,
the extrema are computed and stored. To avoid the influence
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with ID

CylinderTag Recognizer

Connected component labelingConnected component labelingAdaptive thresholdAdaptive threshold

Quad fitting & Feature recovery Marker organizer Marker decoderQuad fitting & Feature recovery Marker organizer Marker decoder

Fig. 6. The pipeline of CylinderTag recognizer.

of extreme pixels occurring in tile boundaries, the extrema
pixel values pmax and pmin are defined as the extrema over
3 × 3 neighbor tiles. Thus, each pixel is given black or
white in accordance with the threshold value defined as
(pmax + pmin)/2.

3.2.2 Connected-component Labeling

After obtaining the binary image, the feature subregions
are set to black, whereas the surrounding background is
expected to become white. Therefore, each feature subregion
should be divided into two isolated quads. Here, a fast and
accurate connected components labeling algorithm named
BBDT proposed by Grana et al. [41] is introduced. By estab-
lishing this algorithm, all the connected regions are congre-
gated with different labels. The size of features is taken into
account so that connected areas with a disproportionately
large or small proportion of pixels are automatically filtered
out.

3.2.3 Quad Fitting

To recover the feature subregions, it is crucial to extract
reasonable quads while excluding connected regions. How-
ever, traditional quad-fitting algorithms often suffer a high
time complexity and are not suitable for use in Cylin-
derTag, which is composed of a large number of quadri-
laterals. To enhance the performance of the marker recog-
nizer, we propose a fast quad-fitting mechanism called Ex-
tended Ramer-Douglas-Peucker (ERDP) algorithm. Ramer-
Douglas-Peucker (RDP) algorithm is an iterative algorithm
widely used in the GIS field for trajectory data compression.
Its idea of iterative search is applied to the proposed quad-
fitting algorithm. First, the border pixels of all connected
regions are extracted by the 2D ray casting algorithm as
shown in Fig. 7. Next, we rearrange the border pixels in
connected order. A randomly selected border pixel is used

Pixels

Ordered Borders

Connected region

Ray

Fig. 7. 2D ray casting schematic. Each grid represents a pixel, the
yellow and gray grids are the connected regions acquired in the CCL
algorithm, and the yellow grids are the acquired ordered border pixels.

as the starting point, and the pixels that are at the border are
arranged in order using depth-first search (DFS).

As the algorithm shows, the border closest to the center
is selected as the starting point of the ordered border, and
the cost =

∥ps+ps+2−2ps+1∥2

∥ps−ps+2∥2
of the triplets connected to the

current starting point is cyclically judged. The point that
satisfies cost ≤ Tcost is considered the starting point. The
point with the farthest distance from the ordinal number
is selected as the endpoint, and the distance between the
middle point and the line connecting these two points is
obtained. If the maximum distance does not exceed the
threshold Tline, it is considered a legal border, and the ex-
pansion module is entered to expand this border until both
ends; if the maximum distance exceeds Tline, the border
corresponding to the maximum distance is treated as the
new endpoint, and the process is repeated until four legal
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Algorithm 2 Extended Ramer-Douglas-Peucker Algorithm
Input: Ordered border pixel cluster {P}
Output: Four line functions {L}

1: Calculate center c of {P}
2: n← the size of {P}, s← 0
3: while size{L} != 4 do
4: while cost > Tcost do
5: Calculate cost← ∥ps+ps+2−2ps+1∥2

∥ps−ps+2∥2

6: if cost > Tcost then
7: n← n+ 1
8: end if
9: end while

10: while True do
11: e← (s+ n/2)%n
12: Calculate line l← Fit line(ps, pe)
13: Calculate distances di,i=s+1,...,e−1 to line l
14: if max di < Tline then
15: {P ′} ← Expand line(ps, pe)
16: {P} ← {P}\{P ′}
17: {L} ← {L}+ Fit line({P ′})
18: break
19: else
20: e← argmax

s
ds

21: end if
22: end while
23: end while

borders are obtained.
Finally, for the candidate regions where the border pixel

cluster is successfully recovered, we fit lines to the pixels
of the four clusters to obtain four line functions. Thus the
intersections of the lines can be calculated and considered
as feature corners. Moreover, an indicator called Regional
Area Coverage (RAC = |S − Card({pi})|/S, where S
refers to the area of the quad and Card({pi}) refers to
the number of pixels belonging to this candidate region)
is introduced, candidate regions with RAC higher than the
threshold TRAC are considered to deviate substantially from
the quads and are thus rejected.

3.2.4 Feature Recovery

At this point, we have obtained all the candidate quad
corners, and the next step is to select the quad pairs that
belong to the same feature subregion. Geometrically there
exist several conditions as follows to assist in filtering two
quads Qi and Qj of the same feature subregion. First, the
difference between the corresponding long side angles θl of
the two quads should not exceed a threshold Tθ , and both
should be similar to the angle of the line connecting the
centers of these two quads θc. Second, since the short sides
of the two quads are close to each other, the two short side
angles θs should remain parallel. In addition, the difference
between the long sides ll of two quads in a standard feature
subregion and the distance between the quads dgap, i.e., the
width of the middle gap area, should be kept under a certain
ratio αgap. Finally, the difference between the lengths of the
two short edges ls and the lengths of the two long edges
of the standard feature subregion should be kept under a
certain ratio αlen, and the difference between the lengths of

ll

ls

ci

cj

dgap

Fig. 8. Schematic diagram of the variables used in feature recovery.

the two short edges should be lower than the ratio αs. Fig. 8
provides a detailed representation of the specific meanings
of the aforementioned variables. The above criteria can be
summarized as follows:

|∆θl | ≤ Tθ

|∆θs | ≤ Tθ

|δθi | ≤ Tθ∣∣δθj ∣∣ ≤ Tθ

dgap ≤ αgap ∗ σl

σs ≤ αlen ∗ σl

|∆ls | ≤ αs ∗min(lsi , lsj )

(4)

where δθi = θli − θc, δθj = θlj − θc, and σl = li + lj .
Therefore, by filtering the above conditions, each quad can
be enumerated to obtain a unique corresponding quad, thus
forming a feature subregion as illustrated in Fig. 6.

3.2.5 Edge Refinement
To further improve the localization accuracy, a gradient-
based double-weighted edge refinement method is imple-
mented to obtain higher corner position accuracy. Due to the
manifold assumption of a cylindrical surface, the quad of
the feature subregion should lie approximately on a plane,
which means the edges of the quad should remain straight.
Since the inside of the quad of the feature subregion is
uniformly black and the outside is white. For each corner,
we uniformly sample its two adjacent edges and sample the
image gradient along the normal edge to find the location
of the largest image gradient in the current sampling point.
However, poor placement when pasting the marker may
cause the long edges of CylinderTag to be affected by curved
surface deformations, making it difficult to maintain the
straight-line assumption. A very intuitive idea is that edges
close to corners are more likely to carry more accurate
edge information, so the discrete point with the largest
gradient is double-weighted according to the distance from
the current corner and the magnitude of the gradient. The
edge functions after refinement are obtained using PCA,
and the refined feature corners are obtained based on the
intersection of these edge functions.

3.2.6 Marker Organization & Feature Extraction
Feature subregions belonging to the same marker should
have close area size and angle, and the neighboring feature
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Fig. 9. Schematic diagram of curved object pose estimation.

subregions should maintain the property of parallel long
edges due to continuity. For two feature subregions fi and
fj , they are considered to belong to the same marker when
the following properties are satisfied:

∣∣∆θf

∣∣ ≤ Tθ
−→
li · −−→cicj ≤ Tver
−→
lj · −−→cicj ≤ Tver

(5)

where θf refers to the long-edge angle of the feature sub-
region,

−→
li and

−→
lj refer to the long-edge vectors of the two

feature subregions, and ci and cj refer to the center of the
two feature subregions.

Therefore, we introduce a marker organization method
based on the Union-find algorithm to search for feature
subregions that satisfy the above properties and cluster
them. Once the markers are organized, we recover the
cross-ratio of each feature subregion by extracting the edge
lengths to obtain the corresponding ID. The corresponding
subfigure in Fig. 6 shows the results of marker organization
and feature extraction.

3.2.7 Marker Decoder
For any marker, the center positions of the feature subre-
gions are sorted and the encoding vector c∗ is recovered
according to the ratio of the center distance and the length of
the short edge of the feature subregion. The encoding vector
is matched with the marker ID dictionary C for maximum
coverage in both directions, and the dictionary position with
the highest matching degree is the marker decoding result
as shown in Fig. 6.

3.3 3D Pose Recovery

3.3.1 Model Reconstruction
CylinderTag is mainly oriented to the estimation of the
pose of curved objects, so compared with the a priori
knowledge that the traditional marker is located on a plane,
this system often needs first to obtain the object model{
PW

k ∈ R3 | k = 1, . . . ,m
}

corresponding to the current
marker with m feature corners and recover the object pose
according to its model. This 3D reconstruction process can
be accomplished using many classical SfM algorithms or
software such as COLMAP. Here, we introduce an iter-
ative 3D reconstruction pipeline [42]. First, a calibrated

TABLE 1
False Positive of Different Marker Systems in Indoor Scene Recognition

Dataset

Marker False number FP
AprilTag (16h5) 6631 42.452%
AprilTag (25h9) 79 0.506%
AprilTag (36h11) 0 0%

ArUco ORIGINAL 5×5 704 4.507%
ArUco 4×4 250 699 4.475%
ArUco 5×5 100 5 0.032%
ArUco 6×6 250 1 0.006%

RUNE-Tag 0 0%
TopoTag (3×3) 2 0.013%
TopoTag (4×4) 2 0.013%

CylinderTag (12c2f) 0 0%
CylinderTag (15c3f) 0 0%

stereo vision system is used to take a surround shot of the
object to be reconstructed, and N pairs of stereo images
{(Ili, Iri) | i = 1, . . . , N} are obtained. Next, an iterative
optimization algorithm is introduced to minimize the fol-
lowing reprojection error function

PW∗ = argmin
PW

pik∈Cli∪Cri∑
i∈{(Ili,Iri)}

∥∥∥∥pik −
1

zik
KT iP

W
k

∥∥∥∥2
2

(6)

where pik refers to the corners in (Ili, Iri), zik refers to the
depth of pik, and K is the intrinsic matrix.

3.3.2 Pose Estimation
After obtaining the 3D model {PW

k } of the object, for any
camera with known intrinsic parameters, we can obtain
the matching relationship between the feature points in the
captured image and the spatial location of the object model
based on the decoding result of CylinderTag in the image,
so as to optimize the following equations using the PnP
algorithm and solve the poses T ∗ of the object in the camera
coordinate.

T ∗ = argmin
T

1

2

n∑
i=1

∥∥∥∥pi −
1

zi
KTPW

i

∥∥∥∥2
2

(7)

4 EXPERIMENTAL VALIDATION

This section gives evaluations of CylinderTag versus tradi-
tional marker systems and shows several application scenar-
ios for CylinderTag. The cameras used are HikVision MV-
CA023-10GM industrial cameras (monochrome, 1920×1200
pixels). The computer is equipped with Intel I7-11700K
(2.50 GHz). Also, the hyperparameters for the recognizer
of CylinderTag are set as follows: Tcost = 1.05, Tline = 1.8,
TRAC = 0.3, Tθ = 5◦, αgap = 0.067, αlen = 15, αs = 0.33,
and Tver = 0.5.

4.1 Detection Accuracy

Detection accuracy is the most important metric to evaluate
the effectiveness of a marker system in use. In this experi-
ment, we compared the detection accuracy of CylinderTag
with four traditional planar marker systems (AprilTag 3
[4] , ArUco [6], TopoTag [31] , and RUNETag [21]) under
different viewpoints. True positive (TP ) is defined as a
correct detection of the marker, which contains both a
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Camera
Protractor

(a)

(b) (c)

Cluttered background

Test model

Pitch

Yaw

Fig. 10. Experiment setup of detection accuracy. (a) Real-world
image acquisition process. (b) Camera pose and movement track for
yaw-view experiments. (c) Camera pose and movement track for pitch-
view experiments.

successful location of the marker and a correct decoding
of the ID. False positive (FP ) is defined as a detection
result returned by the detection algorithm that does not
correctly identify the location or ID. False negative (FN ) is
defined as the presence of a marker at a location that is not
correctly identified with any marker. Furthermore, precision
is defined as TP

TP+FP while recall is defined as TP
TP+FN .

First, the Indoor Scene Recognition dataset [43] with
15,620 images from 67 categories to represent unmarked
scenes is introduced to measure the FP of CylinderTag
versus traditional marker systems. Table 1 shows that both
Apriltag and ArUco rely heavily on their error correction
capabilities for false rejection. Therefore, the FP decreases
significantly as the Hamming distance increases. TopoTag
detects only 2 false markers due to its tight internal topolog-
ical structure arrangement. No false marker is detected by
RUNETag, which is attributed to its extremely strong error
correction capability. CylinderTag does not detect any false
positives either due to the unique design of the features and
the encoding concept of “feature field”.

Further, a 3D printed model attached with traditional
markers and CylinderTag is used to test the detection ac-
curacy under cluttered backgrounds with different view-
points. Here, we tested the precision and recall of each
marker system under different viewing angles correspond-
ing to the two axes of pitch and yaw with a fixed camera,
and Fig. 10 plots the position and movement track of the
camera relative to the model during the experiment. The
specific test procedure is: after fixing the model to a fixed
viewing angle, the camera is moved to the vertical direction
in the visual range while acquiring around 200 frames, and
the detection algorithm is used to calculate the precision and
recall of each marker system.

For cylindrical-like objects, a similar viewing area tends
to be maintained on the yaw axis. For planar markers, one
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Fig. 11. Precision and recall of different marker systems at different yaw
angles of view.
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Fig. 12. Precision and recall of different marker systems at different pitch
angles of view.

of the biggest problems is that a larger viewing angle can
lead to a significant reduction in the visible area, thus re-
ducing the detection performance, as Fig. 11 demonstrates.
For quadrilateral markers such as AprilTag, ArUco, and
TopoTag, the detection is not stable when the yaw axis angle
is greater than 60◦; for RUNETag, the precision is highly
unstable because its features are made up of dots, which
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TABLE 2
Comparison of Detection Speed and Dictionary Size

Marker Detection
speed (ms) Type Dictionary size

CylinderTag 35.21
12c2f 41
15c3f 1092
18c4f 29098

AprilTag 33.49
16h5 30
25h9 35
36h11 587

TopoTag 121.40 3X3 128
4X4 16384

RUNE-Tag 648.82 RUNE-129 17000

ArUco 32.03
16h3 250
25h7 100
36h12 250

are difficult to be detected at small scales; CylinderTag, as a
marker that tightly fits on the curved surface, can maintain a
stable detection performance on the yaw axis, which reflects
its detection advantages under different viewpoints.

In addition, experiments on the detection performance of
the markers at different pitch angles are required. For planar
markers, the yaw angle and pitch angle can be regarded
as similar and can be reflected in Fig. 11 and Fig. 12. For
CylinderTag, due to the projection invariance of the quadri-
lateral feature, its stable detection performance can still be
maintained under a certain pitch angle, which verifies its
high detection rate under different viewing angles.

The results similar to Table 1 are also reflected in the
precision results of various markers in this experiment. The
precision of CylinderTag, TopoTag, and RUNETag all remain
close to 100%. In contrast, AprilTag and ArUco both had
some amount of false positives.

4.2 Detection Speed & Dictionary Size
Detection speed and dictionary size are also two important
metrics to measure the performance of the marker system.
Table 2 lists the detection speed and dictionary size of
different markers. CylinderTag, AprilTag, and ArUco all
maintain ∼ 30 FPS real-time detection capability, while
TopoTag maintains∼ 8 FPS owing to the segmentation part;
RUNETag achieves only ∼ 1.5 FPS due to the extensive and
time-consuming ellipse fitting operation.

In addition, the application of large scenes poses a
challenge to the dictionary size of the marker system. In
order to compromise sufficient error correction capability
and recognition performance, the dictionary size of AprilTag
and ArUco cannot exceed one thousand; RUNETag can
support the generation of 17000 markers due to its heptad
expansion; TopoTag achieves direct mapping from binary to
ID due to its topological structure, thus obtaining sufficient
dictionary size as well; CylinderTag uses cross-ratio as the
encoding method, and introduces the idea of “feature field”
to expand the encoding, thus providing a large enough en-
coding amount. In summary, compared with the problems
of traditional marker systems, CylinderTag can support real-
time applications in large scenarios.

4.3 Localization Jitter Evaluation
The localization accuracy of CylinderTag in real-world sce-
narios was further evaluated by introducing jitter error as

Stereo vision

Models

Camera

Protractor

(b) (c)

CylinderTag
Ring of

AprilTag

(a)

Pitch

Yaw

Fig. 13. Experiment setup of localization accuracy. (a) Schematic
diagram of the 3D printed model. (b) 3D reconstruction process. (c)
Real-world experimental acquisition process.

TABLE 3
Comparison of Input Images and Reprojection Errors in 3D

Reconstruction

Evaluation metrics CylinderTag AprilTagw/ slope w/o slope
Input images 20 57

Triangulation RPE 0.236 0.217 0.245
Left-view BA RPE 0.403 0.121 0.122

Right-view BA RPE 0.288 0.092 0.106

a metric to evaluate the marker system. In fields such as
AR and VR, the violent jitter of the marker can lead to an
unpleasant “shaking” effect on 3D objects that are rendered
on top of the marker. To measure the localization accuracy
of the marker, a cylindrical-shaped 3D model was designed
to test the jitter error under different viewing angles and
distances. Here, with a focus on detection success rates on
the curved surface, we designed a ring of 8× 5 AprilTag as
a comparison model.

4.3.1 Reconstruction

First, we performed 3D reconstructions described in Section
3.3 of the two marker systems and compared the repro-
jection errors (RPE) of these two reconstructed models.
As demonstrated in Table 3, the reprojection error of the
reconstruction model using CylinderTag is larger than that
of AprilTag. Nevertheless, in subsequent experiments, we
utilized the model to verify that its localization accuracy
is significantly superior to that of AprilTag. This finding
indicates that reprojection error may not be an accurate indi-
cator of localization accuracy. Upon further examination of
the CylinderTag model, we discovered that the reprojection
error of corners corresponding to sloping edges was notably
high. However, after eliminating these corners, the reprojec-
tion errors of the reconstructed model were all lower than
those of AprilTag. This provides evidence that in the same
conditions, the reconstruction accuracy of CylinderTag is su-
perior. In addition, the compact structure of the CylinderTag
allows for a convenient 3D reconstruction process which
requires significantly fewer input images than required by
the AprilTag.
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Fig. 14. Rotation and translation jitter errors at different yaw angles of
view.

-60 -40 -20 0 20 40 60

Pitch angle of view (°)

0

0.5

1

T
ra

n
sl

at
io

n
 j

it
te

r 
(m

m
)

CylinderTag

AprilTag

-60 -40 -20 0 20 40 60

Pitch angle of view (°)

0

0.05

0.1

0.15

R
o
ta

ti
o
n
 j

it
te

r 
(°

)

CylinderTag

AprilTag

Fig. 15. Rotation and translation jitter errors at different pitch angles of
view.

4.3.2 Under Different Viewing Yaw Angles
The standard deviation (STD) metric was employed to
evaluate the translation and rotation jitter for each yaw
angle. Fig. 14 depicts that CylinderTag exhibits significantly
lower jitter errors than AprilTag. Furthermore, two-sample
Kolmogorov-Smirnov tests indicate that CylinderTag sur-
passes AprilTag significantly in both rotation jitter (p =
0.006) and translation jitter (p = 0.000).

4.3.3 Under Different Viewing Pitch Angles
When dealing with markers on curved surfaces, the pitch
angle and yaw angle cannot be considered interchangeable.
Therefore, the assessment of translation and rotation jitter
errors for the pitch angle was also carried out using the
same evaluation process as that of the yaw angle. As shown
in Fig. 15, CylinderTag displays substantially lower jitter er-
rors than AprilTag. Additionally, two-sample Kolmogorov-
Smirnov tests reveal that CylinderTag outperforms AprilTag
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Fig. 16. Rotation and translation jitter errors at different viewing dis-
tances.

significantly in both rotation jitter (p = 0.028) and transla-
tion jitter (p = 0.008).

4.3.4 Under Different Distances
Different distances also have a significant impact on local-
ization accuracy, and therefore, we assessed the jitter error
for these two models at various distances. As depicted in
Fig. 16, CylinderTag displays significantly lower jitter errors
than AprilTag. Moreover, two-sample Kolmogorov-Smirnov
tests indicate that CylinderTag outperforms AprilTag signif-
icantly in both rotation jitter (p = 0.002) and translation jitter
(p = 0.012).

4.4 Pose Estimation Accuracy

For a more thorough evaluation of the pose estimation
capability of CylinderTag, it is imperative to assess the
accuracy of pose tracking for the CylinderTag attached to an
object during motion. Here, similar to the methodology de-
scribed in [44], we employed the NDI tracker (Polaris Vega
tracker, Northern Digital, Inc.) to acquire ground truth pose
information. The experiment setup for the pose estimation
accuracy is shown in Fig. 17a. First, a 3D-printed cylindrical
model with a tip mounted on its end was designed for
evaluation. Next, the transformation relationship of the NDI
tracker w.r.t the camera was obtained by tip registration and
hand-eye calibration. During the experiment, the tip pose
detected by the monocular camera through CylinderTag and
the tip pose measured by the NDI tracker were recorded
simultaneously. 2000 consecutive frames were recorded and
the translation and rotation errors of the estimated pose by
CylinderTag with those obtained by the NDI were calcu-
lated.

Fig. 17b shows the plot of the test model tip trajectory
obtained via CylinderTag against the reference trajectory
obtained by the NDI tracker, and Fig. 17c shows the errors in
translation and rotation of the corresponding estimated pose
for each frame. The average pose estimation error was 0.69
mm with a standard deviation of 0.38 mm for the translation
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Fig. 17. Experiment setup and results of pose estimation accuracy.
(a) Setup diagram for the pose estimation experiment. (b) Test model tip
trajectories measured with CylinderTag versus ground truth trajectories.
(c) Translation and rotation errors for estimated poses.

Fig. 18. AR applications. Acquire the pose of the pen by detecting the
CylinderTag and display a model of the airplane in real time.

and 0.46◦ with a standard deviation of 0.20◦ for the rota-
tion. Notably, the pose estimation error of CylinderTag is
significantly smaller than the results reported in [44], where
the best translation error was 1.43 ± 1.09 mm and the best
rotation error was 0.55± 0.38◦.

4.5 Applications

4.5.1 Augmented Reality
Today’s visual marker-based AR applications are still stuck
on a flat surface, which greatly limits the interaction capa-
bility and application scenarios of AR. As shown in Fig. 18,
CylinderTag provides feasibility for the implementation of
the AR domain on cylindrical-like curved objects. By at-
taching CylinderTag to its surface, it can be photographed
with a calibrated camera or cell phone camera to obtain
its positional information, thus enabling more advanced
augmented reality applications.

(a)

(b)

(c)

Fig. 19. Digital pen applications. (a) The digital pen turns a flat surface
into a digital drawing surface. (b) Real handwriting obtained by the
scanner. (c) Handwriting generated by the digital pen.

Fig. 20. Surgical robot navigation applications. Attaching Cylin-
derTag tightly to the end of a surgical robot or instrument enables
compact visual navigation.

4.5.2 Digital Pen

The use of vision-based digital pens has significantly ad-
vanced the fields of VR/AR. These pens are equipped with
visual marker modules that allow for precise and accurate
6-DoF tracking. As a result, they are widely used in appli-
cations such as VR gaming, 2D drawing, and 3D modeling.
However, today’s digital pens often require customization
or additional physical modules [45], which is inconvenient
for users to use. With CylinderTag, users can quickly trans-
form their pen into a digital pen that can track their posture
in real-time, thus “digitizing any pen.” Fig. 19 illustrates the
process of transforming an ordinary pen into a digital pen
with end-tracking capabilities.

4.5.3 Surgical Robot Navigation

Visual navigation is an essential technology for achieving
automated surgical robots [44], [46]. Traditional visual nav-
igation system is mainly based on an external infrared
ball joint, which is unsuitable for surgeries with limited
operating space, such as oral and pharyngeal surgeries,
as well as minimally invasive surgeries due to their large
space occupation. CylinderTag can be tightly attached to the
cylindrical end-effector of the surgical robot, enabling high-
precision visual navigation without occupying additional
space shown in Fig. 20.

4.6 Shortcomings & Extensions

CylinderTag relies on the cross-ratio corresponding to the
intersection of sub-pixel edges for encoding. However,
when there is significant motion blur, as shown in Fig. 21,
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Fig. 21. A failure case. A CylinderTag encountering violent motion blur
may cause the marker to be decoded incorrectly.

Fig. 22. An extension case. CylinderTag can be used to estimate poses
for developable surfaces such as conical surfaces and some profiled
surfaces.

the edge equation extracted by the recognizer may be bi-
ased, resulting in incorrect decoding of the cross-ratio and
ultimately leading to the wrong marker ID being recovered.

As CylinderTag is primarily crafted for the mentioned
developable surfaces, with cylindrical surfaces being the
most prevalent, the marker can also be extended to various
other surface types, including domed surfaces, conical sur-
faces, and some profiled surfaces as shown in Fig. 22, which
significantly broadens the application scope of CylinderTag.

5 CONCLUSION

High-precision localization of curved objects offers a
promising future for AR, VR, and robotics. In this paper,
we propose CylinderTag, a visual marker for cylindrical-
like objects, which is based on the manifold assumption
and encoded using cross-ratio, and the concept of feature
field is introduced to expand the encoding capacity. In
addition, a marker recognizer for real-time detection and
recognition is proposed, and 3D reconstruction of curved
objects is realized. Various experiments, including detection
rate, detection speed, dictionary size, localization jitter eval-
uation, and pose estimation accuracy, have demonstrated
the outstanding performance of CylinderTag. It is currently
the most advanced visual marker that can be applied to
curved objects with developable surfaces.

In the future, we will focus on enhancing the versatility
of CylinderTag by developing a more robust recognizer to
identify markers on various curved surfaces. We believe
that CylinderTag can serve as a source of inspiration for the
development of tight visual markers for arbitrary objects.
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