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Abstract—Checkerboard-like markers are widely applied in
visual localization applications including SLAM, augmented re-
ality, robot navigation, and 3D scene reconstruction. Most corner
detectors assume that the marker is attached to a flat surface,
which severely limits the placement of the marker and thus
reduces the scope of use for these applications. However, in some
scenarios, it is not easy to find an ideal flat surface required
by most corner detectors in a given scenario, in which case the
marker can often only be fixed on a curved surface. Therefore,
the accuracy of most corner detectors may be reduced. In this
study, a novel method is proposed with subpixel accuracy to
detect and locate the corners on a chessboard-like marker which
is either flat or curved. The proposed method fits multi-segment
curves in quadratic form to the edges in a checkerboard-like
marker. The exact corner positions are considered as the inter-
sections of the corresponding curves with analytical solutions. The
proposed method achieves state-of-the-art performance through
experiments including synthetic corner localization test, real-
world stereo vision triangulation experiment, and pose estimation
on a curved object, demonstrating the superiority of our method.

Index Terms—Corner localization, curved marker, multi-
segment curve, quadratic form, subpixel precision.

I. INTRODUCTION

V ISUAL localization is a key technique for many appli-

cations such as robot navigation and augmented reality

(AR) [1]–[5]. There are two mainstreams to address these

applications. One is to extract natural features that exist in

the environment [6]. While more convenient from a practical

point of view, natural features are not guaranteed to be

abundant in every scene, limiting the detection and localization

feasibility. Besides, a fiducial marker that contains many

easily detectable features is commonly introduced for appli-

cations with high precision requirements [7]. Furthermore,

a checkerboard-like marker [8], [9] with a large number of
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handcrafted corner features is frequently utilized [10]. Several

corner detection methods for checkerboard-like markers have

been proposed in recent years, significantly facilitating the use

of the checkerboard-like marker.

Existing corner detection methods [11], [12] primarily focus

on planar markers and perform poorly on non-planar surfaces.

In practice, when detecting the corners of checkerboard-like

markers attached to curved surfaces, these methods often yield

high localization errors and are not well suited to the needs of

high-precision localization, such as in oral surgery. Therefore,

it is difficult to apply these methods well in applications with

very narrow or rugged environments. For instance, fiducial

markers fixed on planar walls or ground can offer sufficient

features for robots to position themselves. However, for appli-

cations where there are scenarios with narrow spaces or uneven

surfaces, such as robot in-pipe navigation, a flat surface is not

always available. Markers mounted on an object can also be

used to provide 6D pose information of the object. However,

for objects with uneven surfaces, the markers can only be

placed on the object precariously, causing great inconvenience

or even failure during pose estimation. For augmented reality,

existing projection mapping techniques are limited to flat or

quasi-flat surfaces due to the precision of corner detection

methods. It will be greatly beneficial if the projection mapping

techniques are available for non-flat surfaces, which requires a

non-planar corner detection method. To summarize, develop-

ing a corner detection method for checkerboard-like markers

on curved surfaces is both necessary and urgent.

In this paper, a novel corner detection method with subpixel

accuracy is presented. Firstly, we use a two-stage filter based

on image gradient and corner template to select all candidate

corners precisely. Following that, the corner array is organized

using a Delaunay triangulation procedure. Next, the sets of

edge sampling points are extracted using the Sigmoid function.

Then, we fit multi-segment curves in quadratic form to the

edges of the curved checkerboard-like marker. Finally, an

analytical solution of the curve intersections is introduced

as the precise corner position. Experiments demonstrate the

precision and robustness of the proposed method. The main

contributions can be elaborated in the following two folds.

1) To improve the corner positioning accuracy of the curved

checkerboard-like marker, a novel corner detection and

localization method based on quadratic form is pro-

posed. First, a two-stage corner detector that balances

efficiency and accuracy is designed. Next, using the

property that the quadratic form remains quadratic or
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degenerates to a line under projective transformation,

multi-segment curves in quadratic form are fitted to

the curved marker edges and the intersection of the

curves is utilized as the precise subpixel corner position.

Further, the simulation experiments demonstrate that

the accuracy of the proposed method is significantly

improved compared to the existing methods.

2) A new pose estimation system for objects on curved

surfaces is developed by utilizing the proposed method.

The performance of detection and localization is reliably

verified through a series of experiments.

The remainder of this paper is organized as follows. Sec-

tion II describes the literature survey on existing corner detec-

tion methods. In Section III, the details of the proposed method

to extract corner positions with subpixel accuracy on curved

markers are described. In Section IV, a series of experiments

are carried out to evaluate the performance of the proposed

method and a curved object pose estimation procedure is

demonstrated to verify the feasibility of the proposed method.

At last, the conclusion and future work of this paper are offered

in Section V.

II. RELATED WORK

Checkerboard-like marker detection is usually divided into

two gradual stages: corner detection and subpixel refinemen-

t. Corner detection identifies all correct corner pixels and

eliminates incorrect candidates as much as possible, while

subpixel refinement is responsible for obtaining the subpixel

coordinates of all corners. The following contents are related

works on these two tasks respectively.

A. Corner Detection

Harris corner detector [11] is based on the intensity of the

sliding mask centered on corners, which will change greatly

no matter what the sliding direction is. However, it is difficult

to rule out false positives. As another commonly used corner

detector, FAST [13] compares the intensity of each pixel with

neighboring pixels in the sampling circle, which leads to

serious misjudgment problems as well. Using a sampling circle

idea similar to FAST, Bennett and Lasenby proposed a corner

detector named ChESS [12]. The key idea is to figure out if the

intensity along the sampling circle is cosine-distributed or not.

However, the cosine distribution is unreasonable under camera

projective transformation. Zhang and Xiong [14] proposed a

hypothesis that the distribution is a two-period square wave to

solve this problem.

The above assumption cannot work well when the marker

is attached to a curved surface or suffers severe distortion. In

this case, a better option is to employ the changing pattern of

pixel intensity. Sun et al. [15] and Yan et al. [16] calculated the

average of the pixels on each sampling circle and binarized the

sampling results. They then picked out pixels with alternating

and symmetric transition points. However, it is still a difficult

problem to set the proper radius under different image scales.

To tackle this issue, Sun et al. used a set of sampling circles

with different radii; a corner is confirmed only if most of the

circles give a reasonable result. Although most of the black

and white stripes can be filtered out, the finer stripes are still

retained. That is to say, the trade-off between the width of the

stripe and the radius of the sampling circle is inevitable.

Template matching has attracted plenty of attention because

of its robustness to noise, perspective transformation, and lens

distortion. Geiger et al. [17] used template matching in final

corner detection. The mean shift algorithm is introduced to

find two gradient directions of each candidate, based on which

they calculated the correlation between the candidates and the

generated corner templates to select the true corners. Yan et al.

[16] also proposed an online template detection method, which

finds the gradient direction based on four transition points and

then constructs a pixel intensity template. Template matching

has two main advantages. First of all, it can significantly

eliminate the problem of misjudgment, and there will be no

other circumstances to pass this test. Secondly, the correlation

score is independent of the pixel intensity, so it is robust to

illumination change. However, both the online generation and

the pixel-by-pixel matching procedures of template matching

consume a lot of resources, which usually means that it is hard

to utilize this method on real-time tasks.

B. Subpixel Refinement

There are two mainstreams for subpixel refinement based

on the corner model. The first method considered a corner

as a saddle point [18], [19], whose neighborhood area can

be interpreted as a surface that can be fitted by a quadratic

function. For corners, the quadratic function turns out to be

a hyperbolic paraboloid whose critical point, is referred to as

the saddle point. Furthermore, Plachet et al. [20] discovered

that establishing a cone-shape low pass filter as a preprocess-

ing step can increase localization accuracy compared to the

traditional normalized Gaussian filter. However, there is some

curvature in the corner edges on the surface relative to the

standard corner model, resulting in a slight drift in the true

corner position compared to the saddle point.

Another method is intuitive that the vector from a corner

to its adjacent area pixel point should be perpendicular to

the gradient of the adjacent area, leading to an optimization

problem that is straightforward to solve in closed form [21].

This well-known idea is utilized in many classical methods like

the function cornerSubPix in OpenCV and Geiger et al. [17].

However, like some of the other methods mentioned above, the

sizing of the neighborhood is an issue. Larger neighborhood

sizes are affected by curved surfaces and do not meet the

above assumptions, while smaller neighborhood sizes tend to

amplify the effect of noise on image gradients.

Moreover, some other methods were proposed as well.

Chen and Zhang [22] proposed a subpixel corner detector that

directly used the Hessian matrix instead of fitting polynomials,

which greatly reduced the amount of calculation but made the

positioning accuracy more susceptible to external influences.

Datta et al. [23] proposed an iterative corner refinement

procedure by performing undistortion and unprojection of

corners to a canonical fronto-parallel plane, which intuitively

cannot utilize on a curved surface.

Corner detection and subpixel refinement are both vital to

checkerboard-like marker detection. Corner detection ensures
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Fig. 1. Detection pipeline. The proposed method is divided into six sub-sections. (a) Fast primary selection of candidates. (b) Robust corner screening based
on template matching. (c) Obtain the connected array by performing Delauney triangulation on the extracted corners. (d) Fitting sub-pixel edge sampling points
based on the connected array. (e) Implement continuity-based sample point segmentation using the proposed ANCF. (f) Extract subpixel corner positions by
fitting multi-segment elliptic curves and finding the intersections.

that all corners are selected out, while subpixel refinement

determines the precision of the corner position. Apparently, the

latter is more important to the accuracy of visual localization.

Hence, the proposed method to improve the corner position

accuracy with subpixel is explained in the following sections

in detail.

III. METHODOLOGY

In this section, a novel corner detection method that se-

lects all the correct candidate corners in pixel using a two-

stage procedure is described. Then we organize the corners

into arrays with the connectivity. Finally, a subpixel corner

extraction process based on quadratic form is established to

obtain the precision location of each corner. Fig. 1 illustrates

the detection pipeline. The details of these steps are discussed

in the following section.

A. Corner Pre-Filter

Traditional corner detectors like Harris or Shi-Tomasi [24]

are common choices for this task. However, we discovered

that the technique described by Chen and Zhang [22] is more

resilient and efficient in terms of image blurring, large noise,

and scale change when employing an image Hessian matrix.

Haralick et al. [25] have analyzed that the eigenvalues of the

Hessian matrix can represent the maximum and minimum sec-

ond directional derivatives of the surface and their associated

eigenvectors should be orthogonal to each other. Therefore, a

new scoring function using the Hessian matrix is created. First,

a low pass filter is necessary for image processing, which can

reduce the effect of noise and smooth the intensity distribution

around the corners. The image gradient G ∈ R
2 is then

computed at each pixel p using a two-dimensional Gaussian

smoothing filter with a predetermined hyperparameter σ. The

Hessian matrix is calculated in each pixel similarly to Chen’s

method.

H =

[

Gxx Gxy

Gxy Gyy

]

(1)

For an ideal corner, the maximum eigenvalue λ1 of the

Hessian matrix is positive while the minimum eigenvalue λ2 is

negative, so the score function S can be designed as follows:

S = −λ1 · λ2 = G
2
xy − GxxGyy (2)

Pixels with higher scores are more likely to be true corners,

whereas pixels around corners tend to receive similarly high

scores. An intuitive idea is to keep only the pixel with the

largest score within the same corner. Therefore, a conservative

non-maximum-suppression [26] (with parameters nnms and

τnms) is applied to suppress multiple candidate pixels under

the same corner. Here, nnms refers to the size of the local

pixel neighborhood, and τnms refers to the dimension of the

non-maximum-suppression. It is obvious that pixels closer to

a corner can gain higher scores. It is worth noting that our

method requires the total number of corners to be input in

advance to estimate the number of candidates in the Corner

Pre-Filter stage. In order to reduce the amount of computation

in the Corner Final-Election stage and keep all the true corners,

we sort all pixels in descending order according to their scores

and keep twice the number of true corners as candidate corners

based on our experience.

B. Corner Final-Election

While the Corner Pre-Filter stage allows the correct corners

to be selected, conditions such as pinstripes (black or white

stripes with a narrow width) can also achieve high enough

scores to make it difficult to be filtered out. Therefore, a robust

method to reject false candidates needs to be introduced in

the Corner Final-Election stage. Given the small number of

candidate corners, the template matching method is ideal for

obtaining excellent filter performance without a large amount

of computation. Firstly, the orientation angles of the two

edges around a corner χ∗ are extracted using a quadratic

fitting surface F(χ∗) because the slight edge angular deviation

causes little influence. This can be transferred to a least squares

problem:

argmin
α,β,γ,δ,ǫ,ζ

∥

∥

(

αx2 + βxy + γy2 + δx+ ǫy + ζ
)

− I(x, y)
∥

∥

2

Ωn×n

(3)

where I(x, y) is the image intensity of each pixel, Ω refers

to the neighboring area of the corner χ∗, and n means the

size of the neighboring area. Besides, the quadratic surface

can be approximated as two hyperplanes multiplied by each

other, where the boundary of each hyperplane is an edge of

the corner. The orientation angles of the edges are defined as

θ1 and θ2, which are calculated as follows:
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Fig. 2. A synthetic representation of a corner.

Fig. 3. The offline generated 36 × 36 corner template. For each candidate
corner, a template corner with the most suitable edge angle and direction
angle will be picked out to go through Corner Final-Election stage.

F(χ∗) ≈ k(x sin θ1 − y cos θ1)(x sin θ2 − y cos θ2) + p (4)

where (x, y) ∈ Ωn×n. Following that, the orientation angle of

each straight edge is gained and the edge angle (defined as

the absolute value of the difference between two orientation

angles), as well as the direction angle (defined as the angle

between the angle bisector and the horizontal direction) of the

candidate corner, are calculated easily.

Then, a handcrafted corner template is generated using these

two angles shown in Fig. 2. Furthermore, it is also time-

consuming if the template is generated online. Therefore, this

paper adopts the approach of pre-generating templates offline

and selecting them online to reduce the amount of computation

during template generation. A problem that cannot be ignored

is the number of offline templates. After a lot of simulation

experiments under noise and other disturbances, we finally

choose to equate the edge angle and direction angle into 36

types respectively, corresponding to a total of 36×36 cases,

and generate these templates offline in Fig. 3. These two angles

may range from 0◦ to 360◦ and 0◦ to 180◦, respectively. The

edge corners are divided equally into 36 cases in steps of 10◦

and the directional corners are divided equally into 36 cases

as well in steps of 5◦.

Once the orientation angles of the edges are obtained, the

template with the smallest angle difference up is picked out.

The response score R∗
score is calculated using Normalized

Cross Correlation (NCC) between the neighboring area of the

candidate and the template. Only if the difference between the

highest response score max(Rscore) and the current response

(a) (b)

Fig. 4. Delaunay triangulation presentation. (a) Original Delaunay triangula-
tion result. (b) Connection result after removing the wrong edges.

score is less than a threshold Tcorrelation, the candidate will

be selected as a true corner.

Rscore =

∑

w

∑

h

(

N − N̄
) (

T − T̄
)

√

(

∑

w

∑

h

(

N − N̄
)2
)(

∑

w

∑

h

(

T − T̄
)2
)

(5)

where N is the image neighboring area of the candidate cor-

ners with fixed width w and height h while T is the template

that is picked out. As a result, all the correct corners are

preserved and the wrong candidates are eliminated efficiently

using this two-step filter method shown in Fig. 1(b).

C. Array Organization

In this part, the Delaunay triangulation procedure is per-

formed for all corners extracted as described in the previous

section. Delaunay triangulation is an algorithm for dividing

point clouds into multiple triangles by connecting the points.

The generated triangles have the property of being as obtuse as

possible. It is also an efficient algorithm whose computational

cost is O(n logn) for n input points.

The result to obtain the connectivity among corner clusters

based on Delaunay triangulation is shown in Fig. 4(a). Based

on the orientation angles of the edges around the corner, the

reasonable Delaunay edges are kept and all the erroneous

Delaunay edges that are not close to any orientation angle

are removed. Here, a threshold θ∗edge to determine whether a

Delaunay edge is close to the corner edge is introduced. When

this process is completed for any edge, the connectivity among

the corners is obtained as shown in Fig. 4(b).

D. Subpixel Edge Sampling

As the connective arrays among corners are received, it

is easy to obtain the directions of the corners around one

corner, which are close to related edges. Here, the corner

positions and the connectivity are used to sample the edges of

each corner with sub-pixel accuracy, paving the way for the

following quadratic fitting part. A step function is frequently

used to abstract the ideal edge model. Whereas photosensitive

components are limited by the convolution effect and optical

diffraction effect, there is usually a transition zone present

in the practical edges shown in Fig. 5. For the practical edge,
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Fig. 5. Schematic of sampling on an ideal edge. The angle of the edge is
perpendicular to the horizontal direction so that the direction of the sampling
sequence is horizontal.

the above simulation model is more significant in the direction

perpendicular to itself. However, for a discrete matrix of image

pixels, it is hard to find and extract the pixels around the edge

whose direction is perpendicular to it. Therefore, it is more

credible and thoughtful to use neighboring pixels in the x-

direction or y-direction that are closer to the vertical direction

of the edge to perform the fitting method.

Subpixel edge extraction has been the classical topic of

numerous studies. Considering the application scenario, the

Sigmoid function is utilized to fit the practical edges:

Sig(S) =
a

1 + e−(S−posedge)/c
+ d (6)

where S is the sampling sequence. The Sigmoid function

is a non-linear function that is continuous and smooth. The

subpixel edge position is obtained by fitting the pixel sequence

near the edges using the Sigmoid function, and the precise

edge position posedge can be considered as the function

position with the biggest derivative. Compared with other

methods, this fitting method does not require a prior search

for pixel-level edge positions, thus significantly reducing the

complexity of the method.

By subpixel sampling of multiple edges around each corner,

we can comprehensively consider the sampling results and the

connectivity between corners to obtain the global boundary

sampling results, as shown in Fig. 1(d).

E. Sampling Points Segmentation

For the general situation, we assume that the edges of

the checkerboard-like markers can be represented by multiple

continuous quadratic curves and straight lines since most of

the curved surfaces which are commonly used can be seen

as a combination of the ellipse, ellipsoid, and flat surfaces.

Therefore, to obtain good fitting results, the discrete sampling

points should be split into segments containing only the

corresponding curves in a single plane, ellipse, or ellipsoid.

However, depending on the position of the marker, the corners

may be close to the surface boundary in some cases. When

using a multi-vision system, if the curve is not correctly

segmented, corners located at the boundaries may be shifted at

different viewing angles, thus reducing positioning accuracy.

Therefore, it is necessary to create a robust paradigm where all

the curves and lines can be correctly separated under different

viewing angles. Here, a two-stage multi-curve segmentation

method is introduced.

ANCF(P
i
)

P
i P

i+1
P
i+2

P
i+3P

i-1

P
i-2

P
i-3

Corners

Edge Sampling Points

Edge Curve

Fig. 6. A schematic of ANCF near a sampling point Pi.

The boundary between elliptic curves and lines can be

mainly divided into two cases. The first is that the edge near

the boundary is discontinuous, and the second is that the edge

is continuous, but the direction of the normal vector near the

boundary is opposite. In the first stage, we aim to pick out

all sampling points with a discontinuous neighborhood edge.

Based on this property, the second-order derivative near the

split point should be very high with respect to the remaining

points. Therefore, the absolute value of the second-order

difference based on the central finite-difference approximation

is used as the response score. Next, a Gaussian filter is applied

to the sampling points to reduce the noise influence. It is

rational that the discontinuous split points in the first case

should obtain a higher score, which can easily be picked out.

For each segment obtained from the first-stage segmenta-

tion, the inner normal direction of the ellipse is used for the

second case to determine the split point. However, the normal

direction is difficult to be obtained because the equation of

the curve is unknown. Therefore, this paper proposes a low-

computational Approximate Normal Curvature Field (ANCF)

to estimate the inner normal direction and curvature of the

curve. Fig. 6 shows a schematic of the calculation of ANCF

at a specific sampling point. Once all split points in the first

stage are obtained, ANCF is used to split all the split points

in the second stage. ANCF is a vector field that is computed

as

ANCF (i) =
∑

∆∈N (i)

S(i,∆)

S(i,∆) =
|Pi−∆Pi+∆ × Pi−∆Pi|

|Pi−∆Pi+∆|2
ω∆(n⊥)∆

(7)

where Pi is the position of the i-th sampling point, ∆ is

the bias on both sides of the i-th sampling point, ω is a flip

Gaussian function that increases as ∆ increases to counteract

the effects of noise from small bias and n⊥ is the unit vector

perpendicular to Pi−∆Pi+∆. Fig. 1(e) shows the ANCF in

the real scenario. Since the ANCF only reflects the inner

normal vector of a single edge on the checkerboard-like

marker, we collected one set of edge sampling points from

the real scenario in Fig. 1 and made it more complex by

flipping, splicing, and extending sampling points to it to test
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Fig. 7. The result of the segmentation of a set of sampling points. Blue dots
are flipped, spliced, and extended from the sampling points obtained in the
real scenario. Red dots represent all the split points picked out in the first
stage, while purple point represents the split points selected in the second
stage using ANCF.

Projective 

Transformation

H

= 0

= 0

Fig. 8. Schematic diagram of quadratic form remaining non-degenerate under
projective transformation. Blue curve and red curve are at the same location
on the cylinder.

the segmentation capability of the ANCF. Fig. 7 shows the

ANCF schematic of this edge. As can be seen, this method has

obtained a good segmentation performance under sophisticated

situations.

F. Subpixel Extraction Based on Ellipse Fitting

After obtaining interval points in each curve, for each

segment of discrete points, the least-squares method is used

to fit an elliptical curve to it. With the generation of some

elliptic curves, the intersections of all curves are found, and

some of the reasonable intersections are considered to be the

accurate corner locations with subpixel accuracy. The ellipse

fitting procedure is described in detail below.

Therefore, these edges are the quadratic form of Euclidean

space R
3. After the perspective projection transformation by

the camera, they are transformed into the quadratic form F

of Image space R
2

F : αx2 + βxy + γy2 + δx+ ǫy + ζ = 0 (8)

The above formula can be expressed as a matrix form

F : XTQX = 0

Q =





α β/2 δ/2
β/2 γ ǫ/2
δ/2 ǫ/2 ζ/2





(9)

In addition, the non-degenerate property of the quadratic

form under the projective transformation provides strong sup-

port for our method as Fig. 8 shown. Consider the change of a

quadratic form under the projective transformation H, which

means the point transformation x′ = Hx

Fig. 9. Schematic diagram of subpixel corner extraction. The position of a
corner is the intersection of two ellipses fitted by edges.

F : XTQX = (X′)T[H−1]TQH−1X′ = 0 (10)

Here, a numerical direct least-squares fitting method proposed

by Fitzgibbon [27] as well as Halı́r̂ and Flusser [28] is

introduced. In this method, the error function constraint is

constructed by the least square method, and the elliptical

quadratic coefficient matrix is divided into blocks according

to the characteristics of the matrix, which is divided into

quadratic parts and linear parts for fitting. The method is

strongly robust to noise and only needs a fraction of the

sample points on the ellipse to fit. Fig. 9 illustrates the elliptical

quadratic fitting performance of each curve.

Finally, it is intuitive that the exact corner position is

considered as the intersection of two curves (or lines) cor-

responding to the two corner edges, thanks to the significant

fitting performance of the edges. To improve the robustness

and stability of the method, an analytical solution based on a

cubic equation is given to solve the intersection of two conic

curves. [29] Let C1 and C2 be two matrices of the conics C1

and C2, we set a pencil of conics {λC1 + µC2 | λ, µ ∈ R}
which pass through the same four real intersections as the two

conics. Next, the proper λ and µ are searched to find a suitable

degenerate matrix by calculating

det(λC1 + µC2) = 0. (11)

Here, it is known by theoretical analysis that there exists

at least one non-zero result in λ or µ, which leads to a

corresponding degenerate conic. Let C = λC1 + µC2, this

degenerate conic can be split into two lines. All that remains

is to use the cubic equation to solve for the intersection of

each line with any of the conic C1 or C2 to get all the

intersections of the two conics. Using the previously obtained

corner position at the pixel level, the closest of the two or four

resulting intersections is kept as the subpixel corner position.

IV. EXPERIMENTS AND ANALYSES

This section gives evaluations of the proposed method,

including localization accuracy using synthetic corner, tri-

angulation reprojection errors on stereo images, and pose

estimation on a curved object, which can reflect the accuracy

and robustness of our method. Experimental conditions were

as follows. The cameras used were HikVision MV-CA023-

10GM industrial cameras (monochrome, 1920×1200 pixels).

The computer was equipped with Intel I7-11700K (2.50 GHz).
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Fig. 10. Analysis of the influence of noise, blur, and edge curvature on the localization precision of some reference methods and the proposed method.

The checkerboard-like markers were printed on a PVC sticker

(220×220 mm) with 10 columns and rows. To prevent ink

bleeding on checkerboard-like markers, we recommend using

the PVC stickers, which are less affected by ink bleeding, to

print the pattern. The size of the neighborhood window of each

corner in our method was n = 7. Also, the hyperparameters

for our method were set as follows: nnms = 3, τnms =
2, θ∗edge = 15◦, w = h = 15, and Tcorrelation = 0.25.

A. Synthetic Corner Localization Evaluation

Firstly, a large number of synthetic corners under different

circumstances were created to evaluate the corner localization

precision of our method with some reference corner detection

methods. Here, we use two reference methods, the first one is

Geiger’s method [17], and the second one uses the function

goodFeaturesToTrack [24] in OpenCV as the corner detector

and uses the function cornerSubPix [21] in OpenCV as the

subpixel refinement method. Besides, the function goodFea-

turesToTrack in OpenCV requires the number of corners as

input. Due to its low success rate of corner detection, we tested
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this method with two different inputs, 25 candidates and 100

candidates. To facilitate the experimental evaluation, the exact

subpixel corner positions of the synthesized images were set

in advance. As shown in Fig. 10, corners were taken from

the neighborhood centered on the intersection of two larger

circles whose curvature can be easily adjusted through their

radii. Out-of-focus blur (σ), imaging noise (σn), low lighting

(In), random perspective distortion (φ), and edge curvature

(κ) were evaluated in four tests. Here, low lightning (In) is

defined as the maximum brightness of the image, and random

perspective distortion (φ) is defined as the out-of-plane rotation

angle.

1) Image noise test: Each image was applied with a Gaus-

sian noise σn ∈ (0, 15)%, a fixed blur σ = 3 px,

a random maximum image intensity In ∈ (0.5, 1), a

random edge curvature κ ∈ (1× 10-3, 1.5× 10-3), and a

random φ ∈ (0, 15)◦.

2) Image blur test: Each image was applied with a blur σ ∈
(1, 5) px, a fixed Gaussian noise σn = 3.0%, a random

maximum image intensity In ∈ (0.5, 1), a random edge

curvature κ ∈ (1 × 10-3, 1.5 × 10-3), and a random φ ∈
(0, 15)◦.

3) Perspective distortion test: Each image was generated

with an out-of-plane rotation angle φ ∈ (0, 60)◦, a fixed

Gaussian noise σn = 3.0%, a fixed blur σ = 3 px, a

random maximum image intensity In ∈ (0.5, 1), and a

random edge curvature κ ∈ (1 × 10-3, 1.5 × 10-3).
4) Edge curvature test: Each image was generated with an

edge curvature κ ∈ (5×10-4, 3×10-3), a fixed Gaussian

noise σn = 3.0%, a fixed blur σ = 3 px, a random

maximum image intensity In ∈ (0.5, 1), and a random

φ ∈ (0, 15)◦.

For each test, the image synthesis and localization process

were repeated by 1000 runs to obtain statistically meaningful

results. A 640×640 pixel image was generated with an in-

plane rotation angle randomly sampled from (0, 2π). The

ground-truth position χ∗
gt of every synthetic image was set to

be the center pixel with a random offset of the true subpixel

position by ±0.5 pixels horizontally and vertically. The mean

localization error (MLE) |χ∗ − χ∗
gt| between the localization

result χ∗ and the ground-truth position was calculated as the

indicator of localization accuracy. Furthermore, localization

errors from all 1000 images were averaged as the result errors

for different situations.

Evaluation results are illustrated in Fig. 10. Image noise

is ubiquitous and frequently becomes the most direct cause

of localization errors, which can significantly influence the

fitting model. The performance of all methods in the image

noise test is clearly reduced with increasing noise. Compared

with the OpenCV method, the proposed method achieved a

performance improvement of no less than 18.75% in all tests.

As for Geiger’s method, the accuracy of the proposed method

is significantly higher than it is under low noise, but the gap of

positioning error is gradually decreasing as the noise increases.

For cameras with traditional fixed focal length lenses, image

blur is common and unavoidable when the target object

moves in a large range, which can significantly influence the

3D Printed model

Stereovision system

Fig. 11. Experimental setup for evaluation of the detection accuracy. A
3D printed model with a PVC marker attached on is placed in front of a
stereovision system. The image pairs on the right are captured by this system.

localization accuracy. When σ = 0 (which is impossible in

reality), the OpenCV method received the best result due to

its iterative optimization method, while it was difficult for

our method to extract the precise edge position of this ideal

edge model, which led to an abnormal rise in the experiment

result. As σ increases from 1, the proposed method exhibited

better performance. Specifically, the evaluation result showed

an over 35.98% performance improvement with the OpenCV

method at σ = 5 and a 46.04% performance improvement

with Geiger’s method at σ = 2.

The change in viewing angle has a huge impact on the

positioning accuracy of the corner detector. A larger out-of-

plane rotation angle leads to a decrease in the edge angle as

Fig. 10(c) shows, resulting in an increase in the localization

uncertainty of the corner. As the edges approach with an

increased viewing angle, which makes the edge sampling

difficult, the accuracy of our method decreases as the viewing

angle increases but remains low compared to the reference

methods.

The main difference between planar and curved corners

is the curvature of the edges. Theoretically, the reference

methods should suffer a localization deviation due to the edge

not being completely perpendicular to the gradient direction.

Hence, it is necessary to evaluate the effect of edge curvature

on corner positioning accuracy. With the increase of edge

curvature, the proposed method did not reflect the positive

correlation between error and curvature and obtained the

minimum error among all testing methods.

At the same time, the proposed method had consistently

maintained the highest success rate (SR). A success localiza-

tion result was defined as |χ∗−χ∗
gt| ≤ 1 , though the OpenCV

method with more candidates did not perform better when

the success rate increased significantly. This result verified the

robustness of the proposed method in harsh environments.

B. Real-World Stereo Triangulation Evaluation

To further evaluate the real-world positioning accuracy,

a triangulation performance experiment was designed using

stereo images captured by the two calibrated industrial cam-

eras mentioned above. As shown in Fig. 11, a checkerboard-

like marker was attached to a 3D printed model that is

designed as a combination of several elliptical columns. It

was placed in the common field of view of the stereo camera
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Fig. 12. Evaluations of average triangulation reprojection error of the
proposed method with reference methods.

TABLE I
PERFORMANCE COMPARISON OF AVERAGE REPROJECTION ERROR ON

STEREO IMAGES WITH INCREASING EDGE CURVATURE AROUND

CORNERS

Method

Curvature (×10-3)

Small Large

(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, +∞)

Proposed 0.0856 0.0611 0.0764 0.1015 0.0904 0.1194 0.1046

MATLAB 0.0565 0.0655 0.1054 0.1363 0.1310 0.1730 0.2780

Geiger et al. 0.0766 0.0899 0.1536 0.1876 0.1818 0.1814 0.1429

OpenCV 0.0673 0.0894 0.1572 0.1956 0.1957 0.1870 0.1611

OCamCalib 0.2306 0.2046 0.1879 0.2447 0.1940 0.2417 0.2911

and 10 pairs of images were collected by changing the

model’s poses and ambient light. Here, the proposed method

is compared with five reference algorithms, Geiger’s [17],

Duda’s [30], OCamCalib [31], OpenCV (using the function

findChessboardCorners to detect corners with the function

cornerSubPix for subpixel refinement), and MATLAB (us-

ing the function detectCheckerboardPoints), respectively. The

average reprojection Root Mean Squared Error (RMSE) is

calculated as a test metric by extracting the corners of the left

and right views of each image pair and obtaining the spatial

positions of their corners using triangulation.

The average reprojection error for each method is summa-

rized in Fig. 12. The proposed method achieved the lowest

result, which reflected the high precision and robustness of our

method. Our method achieved an improvement of more than

18.25% compared to all reference methods, while the method

Duda and Frese [30] recently proposed with high localization

accuracy was unable to successfully extract corners in these

images. The lowest RMSE result demonstrated the best per-

formance of our method in practical applications, such as 3D

reconstruction and pose estimation on curved surfaces.

In addition, the relationship between the edge curvature

of each corner and the corresponding reprojection error was

analyzed. Since the proposed method has good edge fitting

performance, the curvature at the intersection of the ellipses

can be approximated as the curvature of the edges. As listed

in Table I, in the case of small curvature, the proposed method

did not maintain the lowest error, while in the cases of large

curvature, it consistently maintained the minimum error among

all methods. Besides, the mean projection error increases in

(a)

(b)

(c)

Fig. 13. The pose estimation process for a pen-shaped cylindrical object. The
spatial positions of the vertices are obtained by touching each vertex of the
square pyramid model with the pen tip, as shown in (a), (b), and (c).

large curvature compared to small curvature in MATLAB,

OpenCV, and Geiger’s method. Whereas the proposed method

still maintained a relatively smooth error variation, reflecting

the low influence of curvature on the reprojection error in our

method.

C. Pose Estimation on Curved Object

Due to the limitations of traditional corner detection meth-

ods, it is difficult to achieve pose estimation for objects

with curved surfaces. By establishing the proposed method, a

checkerboard-like marker can be tightly affixed to objects with

curved surfaces, thus achieving a stable and high-precision

object pose estimation procedure. In this experiment, the Hy-

draMarker 1, a checkerboard-like marker with a high density

1https://github.com/Lilin2015/Author---HydraMarker
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Fig. 14. Schematic diagram of the quadratic fitting results using the proposed
method under local illumination changes or occlusion.

of unique features and resistance to bending, was utilized and

attached to a pen-shaped cylindrical object for a high-precision

pose estimation application. By identifying the corner position

of the marker, a PnP (Perspective-n-Point) procedure was used

to obtain the pose of the marker and the homogeneous matrix

between the pen tip with the marker was acquired to realize

the pose tracking of the pen tip. Fig. 13 shows the pose

estimation process. It is worth noting that the proposed method

is robust to local low-lighting conditions and occlusions as

Fig. 14 shows. The failure of partial corner detection in

some extreme cases does not affect the quadratic fitting of

the remaining corners due to the correct connectivity among

these corners, and the accuracy of these corner positions is

essentially unaffected.

D. Discussion

According to the results on synthetic corner localization test

and real-world triangulation experiment, the proposed method

reflects a clear superiority in accuracy and robustness over

the compared methods. Compared to the OpenCV method

and Geiger’s method, which only use information from s-

mall neighborhoods around individual corners, the proposed

method, which utilizes connectivity and edge information from

all corners, shows the best performance against Gaussian noise

and blur. However, the reference methods are not affected by

the increased curvature of the corner edges due to the small

size of corner neighborhoods. For real-world experiments,

the proposed method obtains minimal reprojection error on

average with small fluctuation, which demonstrates that it can

consistently obtain accurate corner positions in different view-

ing angles and illuminations. However, during the experiments,

we found that there may be a slight offset in the segmenta-

tion results of the multi-curve segmentation algorithm under

different viewpoints. If there is a corner exactly between the

offset, it will lead to the same corner belonging to different

curve segments under different viewpoints, which often leads

to an abnormal increase of reprojection error in triangulation.

Nevertheless, existing outlier rejection algorithms such as

RANSAC [32] can easily exclude this corner according to the

reprojection error, thus not affecting the positioning accuracy.

Finally, a demonstration of object pose estimation based on

curved markers was given, indicating a promising application

of the proposed method.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and implemented a pre-

cise subpixel corner detection and localization method for

checkerboard-like markers on curved surfaces. Firstly, a pro-

gressive two-stage corner detector is designed. After that,

a Delaunay triangulation procedure is used to organize the

connectivity among the corners. Next, the edges of the

checkerboard-like marker are fitted by the multi-segment con-

tinuous curves based on quadratic form. Finally, the inter-

section of the corresponding curves is considered the precise

corner position. Experiments are carried out to evaluate the

performance of the proposed method which demonstrates the

best performance of the proposed method in a practical sce-

nario. The feasibility and superiority of the proposed method

are demonstrated in the pose estimation test on an object

with curved surfaces. The experiments demonstrate that the

proposed method can achieve state-of-the-art performance and

good feasibility compared to other methods.

In the future, we will extend the proposed method to

more complex scenarios with uncertain curvature based on

more robust and precise curve segmentation algorithms, and

continue to improve the real-time performance of the method.
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